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Interventional oncology (IO) is a subspecialty field of in-
terventional radiology that addresses the diagnosis and 

treatment of cancer and cancer-related problems by using 
targeted minimally invasive procedures performed with 
image guidance. With this specialization, interventional 
oncologists observe patients in the clinic, admit patients 
to hospitals, serve on tumor review boards and multidis-
ciplinary treatment teams, and have active roles in the di-
agnosis and management of patients with cancer (1). The 
interventional oncologist is an essential member of the 
treatment team for the patient with cancer (2–5). Inter-
ventional oncologists can identify safe approaches for per-
forming minimally invasive tumor biopsies to obtain the 
necessary genetic or proteomic material that is needed to 
precisely tailor the chemotherapeutic agents expected to 
elicit the greatest treatment effect (6). Immuno-oncology is 
an innovative area of cancer research and practice that seeks 
to help the patient’s own immune system fight cancer. In 
November 2016, the Society of Interventional Oncology 
formally commissioned a white paper to explore the syn-
ergies between IO and immuno-oncology. A panel of 18 
expert interventional oncologists and immuno-oncologists 
were selected and invited by the Society of Interventional 
Oncology to identify essential elements of the emerging 
field of immuno-oncology for interventional oncologists 
with the goal of issuing this consensus document. This pan-
el met on January 23, 2017, for a full-day meeting in New 
York at Memorial Sloan-Kettering Cancer Center and had 

multiple subsequent teleconferences to evaluate key areas in 
immuno-oncology considered integral to the interventional 
oncologist’s practice. This paper represents a consensus re-
port by the panel on the current state of the synergies be-
tween IO and immuno-oncology as well as the future direc-
tions of the fields, which was formally ratified by the Society 
of Interventional Oncology in September 2018.

Stimulating the Immune System by 
Using IO Techniques
In IO, a large variety of in situ tumor destruction tech-
niques such as thermal ablation, chemo- or radioembo-
lization, irreversible electroporation, and high-intensity 
focused ultrasound have been successfully used for the 
treatment of an array of malignancies. Whereas ablative 
techniques are diverse in technology and the mechanism 
of inducing cell death, they share one key feature: creat-
ing in situ availability of the ablated tumor material (7). 
The ablated material can induce immune responses lead-
ing to the infrequently observed abscopal effect (8,9). The 
ability to stimulate the immune system upon scavenging 
antigens from dead tumor cells has led to the concept that 
in situ tumor destruction can be used to achieve systemic 
so-called in vivo vaccination against tumors. Several 
studies (10–12) have demonstrated that a tumor can ul-
timately serve as its own antigenic vaccine after ablation, 
provided that additional contextual signals are provided 
via immunotherapy.
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Transarterial embolization induces tumor-associated anti-
gen (TAA)–specific responses, with an increase in the diver-
sity and strength of TAA immune responses after embolization 
(25,29). This so-called neo-antigenic expansion after TACE 
can be augmented by blocking cytotoxic T-lymphocyte anti-
gen-4 (CTLA-4), resulting in an unmasking of TAA-specific 
immune responses (29). TAA-specific T cell responses after 
TACE have been demonstrated to be associated with patient 
survival (30,31). TACE has also been demonstrated to increase 
circulating Th17 cells in some patients with HCC, and this 
increase correlates with overall survival and time to progression 
(32). Furthermore, changes in T cell populations have been 
shown after bland hepatic transarterial artery embolization and 
TACE. After transarterial artery embolization, Treg fractions 
decrease 32% in the peripheral blood (33). In patients with 
HCC who were treated with TACE, the ratio of CD4/CD8 T 
lymphocytes increased, whereas the percentage of CD4+CD25+ 
Treg cells decreased 1 month after treatment, suggesting that 
the immune function of patients with HCC was improved af-
ter TACE (34). Finally, there are complex changes in inflam-
matory cytokine profiles after TACE, which are likely to influ-
ence the global immune response in the days and weeks after 
TACE (35).

Immune Response to Yttrium 90 Radioembolization
Yttrium 90 (90Y) transarterial radioembolization (TARE) (also 
called selective internal radiation therapy) has become a com-
monly used approach for treating HCC (36–40) and other 
cancers (41–45). The antitumor efficacy of ionizing radia-
tion has been largely attributed to its capacity to induce direct 
tumor cell death through DNA damage of cancer cells (46). 
Besides its local-regional anticancer efficacy, ionizing radiation 
may also induce immune-mediated antitumor responses dis-
tant to the targeted area, known as the abscopal effect (47). 
Strong evidence supports the ability of ionizing radiation to 
induce an immune response, providing the rationale to use 
radiation therapy in combination with immune-based strate-
gies (48,49). Once administered into the hepatic artery, the 
90Y microspheres are preferentially trapped into the tumor 
microvasculature, allowing for selective tumor targeting while 
relatively sparing normal parenchyma (50). TARE is able to 
generate an inflammatory reaction, which is particularly evi-
dent at cross-sectional imaging performed after the procedure 
(51). 90Y-microsphere administration is followed by an increase 
in proinflammatory and oxidative stress biomarkers (52–54).

The core mechanism is that ionizing radiation–induced 
cell death generates a flood of preserved tumor-associated 
antigens, creating an effective in situ tumor vaccine (55,56). 
Among many interactions, radiation improves dendritic cell 
priming of antitumor T cells and increases major histocom-
patibility complex class-1 expression, thereby facilitating tu-
mor antigen manifestation to T cells (57–59). High-mobility 
group box 1 protein (known as HMGB1) released from ir-
radiated dying tumor cells activates toll-like receptor–4 path-
ways, which increase tumor antigen recognition (60). Local 
radiation therapy modulates the tumor microenvironment 
by prompting macrophages to secrete nitric oxide, which 

Summary
We provide a concise report on the current state of the synergies that 
exist between interventional oncology and immuno-oncology, as well 
as the future directions of these fields.

Immune Response to Ablation
Data are limited regarding the different contextual immune re-
sponses between the various ablation methods. To our knowl-
edge, it remains unknown regarding which technique results in 
the most effective release of tumor antigens, creates the most 
immunostimulatory environment from a molecular perspec-
tive, or combines most effectively with optimally timed im-
mune-stimulating therapies.

Cryoablation has been shown to induce greater increases in 
the plasma level of some cytokines compared with other heat-
based therapies such as radiofrequency ablation (RFA), sug-
gesting that a greater postprocedure immune response with 
this technique can be achieved compared with other thermal-
based techniques (13–17). Mechanical high-intensity focused 
ultrasound (settings, such as boiling histotripsy, are unique 
in that they result in emulsified acellular (tumor) debris that 
can be more effectively removed via drainage or absorbed as 
part of the physiologic healing response (18,19). Each abla-
tion technique generates a unique antigenic fingerprint. This 
is illustrated by the variability in desmoplastic response among 
ablative modalities. This fingerprint interacts with the existing 
T cell pool preablation to determine the final tumor-directed 
T cell repertoire. Clonal analysis of the T cell repertoire follow-
ing cryoablation shows that 18% of T cells undergo clonal ex-
pansion, demonstrating diversification and remodeling of the 
intratumoral T cell reactivity (20). Identification and further 
understanding of the unique antigenic fingerprint expressed 
during various ablation techniques will be crucial for optimiz-
ing therapies for each tumor type and stage of cancer.

Immune Response to Transarterial 
Chemoembolization
At present, the largest application of transarterial chemoem-
bolization (TACE) of tumors is for hepatocellular carcinoma 
(HCC). Several lines of evidence support a role for targeting 
the immune system in HCC. Patients with HCC exhibit a 
66% increase in circulating regulatory T cells (Tregs) com-
pared with healthy control patients, in part through tumor-
secreted transforming growth factor (TGF) b mediated ex-
pression of forkhead box P3 (known as FOXP3) (21). The 
percentage of Tregs has been shown to correlate with disease 
stage, with increasing Tregs observed in more advanced stages 
of HCC (22–24), suppressing the immune system’s ability to 
recognize tumor as foreign. Tumor-infiltrating lymphocytes 
have been shown to represent the largest share of Tregs in 
patients with HCC (25). A high percentage of Tregs have 
been associated with a poorer survival prognosis (26). In ad-
dition, a high tumor-infiltrating macrophage density predicts 
poor prognosis in patients with HCC (hazard ratio, 1.6) (27). 
However, a proinflammatory antitumor microenvironment is 
associated with superior survival in patients with HCC (28).
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pathways (84–87). Increased tumor expression of vascular 
endothelial growth factor (VEGF), VEGF receptor, hypoxia-
inducible factor 1-α (HIF-1-α), matrix metalloproteinases 
(known as MMPs), cluster of differentiation 147 (CD147), 
and mammalian target of rapamycin (known as mTOR), and 
genes for cellular proliferation, tissue remodeling, and inflam-
mation have all been reported after TACE (86–89). Similarly, 
increased growth factor expression (VEGF and platelet derived 
growth factor–BB) and increased markers of inflammation (in-
cluding IL-6 and IL-8), oxidative stress, and endothelial damage 
have been observed after TARE (84,85). Finally, there are also a 
number of studies that demonstrate the potential tumorigenic 
effects of tumor ablation, including ablation-induced local and 
systemic inflammation (including cytokines such as IL-6 and 
heat shock proteins), and upregulation of pro-oncogenic growth 
factors (such as HIF-1-α, VEGF, hepatocyte growth factor, and  
hepatocyte growth factor receptor [c-Met]) (71,74,80,90). In 
some cases, local hepatic thermal ablation has been linked to a 
higher rate of distant intrahepatic tumor development, and in-
creases in inflammation (IL-6) and growth factors (ie, hepato-
cyte growth factor) have been directly linked to overall worse 
patient outcomes (72,83,90). Experimental and clinical studies 
(75,81,82) further suggest that such effects occur for many of 
the currently used ablative technologies, especially for sublethal 
or so-called stunned tumors, and that varying ablation param-
eters for the same technology may incite or reduce so-called off-
target effects.

Specific clinical evidence of the potential importance of off-
target, tumor stimulatory effects of IO therapies, in particular 
regarding tumor ablation, also exists. In a study (91) of 580 
patients with small (,3 cm) HCC, thermal ablation led to a 
higher 5-year cumulative distant intrahepatic new tumor rate 
(62.7% vs 36.6%) and worse disease-free survival rate (31.7% 
vs 61.1%) compared with surgical resection. Those investi-
gators also detected separate new HCC tumors in the same 
segment in up to 15% of patients after thermal ablation of 
the primary HCC (76). In recent randomized controlled tri-
als that compared thermal ablation with surgical resection for 
colorectal liver metastases, ablation led to a 39% increase in 
new, separate intrahepatic metastases compared with surgical 
resection (73,83). Three large studies representing over 550 
patients treated with RFA for small (,3 cm) HCC had sig-
nificantly higher rates (73%–80%) of new distant tumors 5 
years after RFA compared with an anticipated cumulative inci-
dence of 26%–55% for a similar population not treated with 
RFA (92–95). There are also increasing reports of postablation 
phenomena in clinical ablation scenarios beyond liver cancer. 
Recent National Institutes of Health data regarding RFA of 
renal tumors provides the most direct in-patient evidence of 
tumorigenic effects (96). In their series of 63 patients with 
multiple hereditary renal cell carcinomas in which one tumor 
was treated with RFA, untreated tumors manifest at the time 
of ablation had an accelerated growth rate (fourfold) after RFA 
in 26 patients. Clearly, studies that explore the immunogenic 
effect of interventional radiology procedures should also take 
into consideration any systemic pro-oncogenic effects that may 
be concomitantly created.

promotes vascular normalization, secretion of chemokines, 
T cell recruitment, higher endothelial expression of vascular 
adhesion molecule-1, improved tumor recognition, and kill-
ing by CD8+ T cells (61). A sustained increase of  interleukin 
(IL)-6 and IL-8 occurring 6–8 weeks after therapy has been 
reported (52,54). A selective approach permits maximization 
of the administered dose and decreased toxicity, and also en-
ables repeated TARE (62–64), but is currently applied only to 
patients with limited disease.

In addition to promotion of immunity, radiation may ex-
hibit certain immuno-inhibitory effects. Radiation upregulates 
TGF-β1 and galectin-1, which have been shown to indirectly 
suppress T cell activity (61). Although TARE does not rely on 
the embolic effect of microspheres, there is a 28% Hounsfield 
unit reduction at delayed arterial-phase CT after TARE, which 
suggests a potential decrease in local oxygen supply (65). Tran-
sient lymphopenia has been previously observed (66) in patients 
undergoing TARE, which is usually of no clinical consequence, 
but this effect may interfere with the immune response. Whereas 
radiation induces tumor vascular normalization, it can also exac-
erbate local hypoxia via endothelial damage and veno-occlusive–
associated interstitial hypertension, which theoretically abates 
local immune responses (67,68). Although preclinical models 
support hypofractionated external beam therapy to maximize 
the effective antitumor immune response, to our knowledge, 
the equivalent dosimetry of brachytherapy has not been studied 
specifically for this purpose (69). Similar studies are necessary 
for brachytherapies because the clinical expansion of external 
radiation therapy to treat liver tumors has been limited by the 
marked radiosensitivity of nontumoral liver parenchyma even 
with technologic improvements to deliver radiation dose to the 
target volume (70).

Tumor Stimulatory Effects of IO Therapies
There is increasing clinical and experimental evidence that IO 
therapies can induce local and systemic secondary biologic 
reactions that promote aggressive tumor biology and stimu-
late tumor growth (71–73), which could potentially coun-
teract any of the beneficial immune effects of interventional 
radiology procedures. These effects can be related to changes 
in tumor cells and/or normal tissue that are manifest within 
the treatment zone (71,72). Cell populations and molecular 
pathways that are responsible for these stimulatory effects may 
share common links with immunogenic pathways linked to IO 
therapies in part on the basis of the type of therapy, organ, 
and primary tumor type (71,73–82). Furthermore, the clinical 
evidence includes findings regarding the upregulation and ex-
pression of key cytokines and pathways that are associated with 
tumor growth and stimulation. Retrospective studies (75,83) 
suggest a higher incidence of tumor progression after IO ther-
apy and studies link patient outcomes to key expressions of 
tumor markers and upregulation of oncogenic pathways after 
treatment (83).

Many of the commonly used IO therapies, including tran-
sarterial embolization, TACE, TARE, and tumor ablation, can 
incite secondary reactions generating growth factors and cyto-
kines that have roles in both immunogenic and pro-oncogenic 
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Combining IO Therapies with 
Immunotherapy
Several groups (105) have investigated combining immuno-
therapy approaches with transarterial embolization. Ito et al 
reported safety and limited response combining Freund’s ad-
juvant with recombinant IL-2 for TACE in HCC. By using a 
pulsed hepatic arterial infusion approach, Lygidakis et al (106) 
reported a median survival of 18 months in a group of 20 pa-
tients with HCC who underwent direct infusion of IL-2 and 
IFN-γ into the hepatic and splenic arteries. They went on to 
report that postresection recurrence was reduced from 55% to 
0% in a group of 40 patients with HCC prospectively ran-
domized to receiving the therapy in an adjuvant setting after 
resection (107). In another prospective randomized study in 
patients with colorectal  cancer with liver metastases, Lygidakis 
et al (108) demonstrated addition of IL-2 and IFN-γ into the 
standard hepatic arterial infusion chemotherapy regimen led 
to a median survival of 20.3 versus 9.9 months in the che-
motherapy-only hepatic arterial infusion group. Whether the 
hepatic arterial infusion results reported will translate into a 
more conventional TACE regimen is unknown, though some 
early studies suggested that immunotherapy in combination 
with TACE may yield improved survival. Kanai et al (109) 
combined OK-432 with embolization with a prolongation of 
disease-free survival compared with embolization alone. Yuen 
et al (110) reported a median survival of 15.9 months by com-
bining IFN-γ with embolization. Valsecchi et al (111) demon-
strated a 4.3-month survival benefit in treating liver metastases 
from uveal melanoma by combining lipiodol and granulocyte-
macrophage colony-stimulating factor (known as GM-CSF) 
with embolization compared with embolization alone.

Other groups have sought to combine arterial infusion of 
activated immune cells with embolization (adoptive immu-
notherapy). Nakamoto et al (112) administered autologous 
dendritic cells during transarterial artery embolization, result-
ing in the induction of tumor antigen-specific T lymphocyte 
responses without a statistically significant change in survival 
rate. However, they did demonstrate a prolonged recurrence-
free survival of patients with HCC by combining hepatic ar-
tery infused OK-432-stimulated dendritic cells with transarte-
rial artery embolization, and the induction of proinflammatory 
peripheral cytokines was consistent with an antitumor immune 
response (113). Hao et al (114) reported a median overall sur-
vival of 31 months in patients with unresectable HCC by using 
TACE combined with cytokine-induced killer cells compared 
with 10 months by using TACE alone. They used an activation 
cocktail of CD3, IL-2, and IFN-γ to activate peripheral blood 
mononuclear cells from the patients during pretreatment. 
Huang et al (115) reported an overall survival of 56 versus 31 
months in a retrospective nonrandomized analysis of patients 
who underwent either TACE or RFA with cytokine-induced 
killer compared to TACE or RFA alone.

Finally, the advent of checkpoint inhibitors in HCC man-
agement is likely to change the treatment landscape consider-
ably. The programmed cell death protein 1 inhibitor nivolumab 
(Opdivo; Bristol-Myers Squibb) represents the first checkpoint 

Human Clinical Research on the Immune 
Effects of IO Therapies
Efforts are currently underway to better understand the effect 
of embolization and ablation on the immune system through 
several lines of human clinical research. Most of these studies 
have assessed changes in peripheral blood lymphocyte popu-
lations. After thermal ablation, CD8 T cell fractions increase 
by 10% and CD8-to-Treg ratios increase by 15% in the pe-
ripheral blood (97). These changes are most pronounced for 
heating-based ablation versus cooling-based ablation. After 
cryoablation of early stage breast cancer, proliferating (Ki67+) 
and activated (ICOS+) CD4 and CD8 T cells were identified 
in the peripheral blood (98). More importantly, in the study’s 
ablate-and-resect model, increases in CD8-to-Treg ratios were 
noted in the resected specimen. Deep sequencing of T cell 
receptors from patients in this cohort showed that whereas 
high magnitude clonal expansion (.1000 copies) did occur 
with cryoablation alone, the number of clones that exhibited 
high magnitude clonal expansion doubled with the addition 
of ipilimumab (20). RFA of HCC also produces increases in 
CD4 cells, with a 19% increase in Th1 populations, which aid 
in CD8 cell costimulation (99). RFA of HCC also leads to a 
nearly 60% increase in natural killer (NK) cell populations in 
humans, and the functionality of these NK cells (as indicated 
by inferon (INF) γ production) strongly predicts survival after 
RFA (100). Following hepatic artery embolization, both Th1 
and Treg populations decrease in the peripheral blood (33).

The immune microenvironment of tumors has a major role 
in the response to image-guided therapy. Tumor microenviron-
ments can be locally assessed via biopsy or systemically by de-
termining the concentration of peripheral blood mononuclear 
cells. Both neutrophil-to-lymphocyte ratio and the lymphocyte-
to-monocyte ratio are thought to reflect immunogenic (lym-
phocytic) versus inflammatory (neutrophilic) environments 
and have been found to be prognostic of outcomes following 
image-guided intervention. These indicators may reflect the pre-
carious balance between tumorigenic inflammatory influences 
and helpful immunogenic responses. Patients with small HCCs 
undergoing RFA with a decreased neutrophil-to-lymphocyte 
ratio showed better survival than those with increased neutro-
phil-to-lymphocyte ratio; moreover, postoperative neutrophil-
to-lymphocyte ratio change was almost as predictive of survival 
as tumor size (hazard ratio, 2.39 vs 2.68, respectively) (101). El-
evated neutrophil-to-lymphocyte ratio (.5) is an independent 
predictor of worse survival in patients who undergo 90Y TARE 
for colorectal metastases in liver (102). High preoperative neu-
trophil-to-lymphocyte ratio (.2.79) and elevated postoperative 
neutrophil-to-lymphocyte ratio was associated with a significant 
increase in risk of local recurrence and distant metastasis after 
RFA of renal cell cancer (103). However, lymphocyte-to-mono-
cyte ratio is predictive of survival after RFA for colorectal liver 
metastases (104). Further studies will be critical to better un-
derstand the immune microenvironment, determine optimal 
neutrophil-to-lymphocyte and lymphocyte-to-monocyte ratios 
related to various interventional techniques, and ultimately aid 
the timing and selection of future image-guided therapies.
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Development and Optimization of 
Noninvasive Methods to Monitor Effects of 
Immunotherapy
In addition to the necessity to determine optimal treatment 
sequencing in the development of combination therapies, the 
growth of various immunotherapy approaches and their com-
binations with local-regional therapy approaches will cause a 
shift in diagnostic radiologists’ assessment of tumor response 
and plans for follow-up imaging. Current techniques and 
imaging response criteria (eg, response evaluation criteria in 
solid tumors [known as RECIST], modified RECIST [known 
as mRECIST], and quantitative European Association for the 
Study of the Liver [known as qEASL] measured at CT, MRI, 
and conventional fluorodeoxyglucose PET imaging, PET Re-
sponse Criteria in Solid Tumors [known as PERCIST]) were ini-
tially developed to assess the effects of conventional cytotoxic 
chemotherapies. These criteria are on the basis of evaluation of 
the changes in tumor size and enhancement after treatment. 
Because immunotherapy mostly facilitates or modulates the 
inflammatory response rather than causing tumor cell death 
through cytotoxic effects, to our knowledge no specific guide-
lines exist to evaluate changes in tumor imaging appearance 
after such treatment. Several response criteria have been de-
veloped to evaluate patients treated with systemic immuno-
therapy. Unidimensional immune-related RECIST provides a 
feasible and reproducible alternative that is highly concordant 
with immune-related response criteria (131). The bidimen-
sional immune-related response criteria are a modification of 
the World Health Organization criteria and recommend con-
secutive follow-up imaging with a prolonged interval of at least 
4 weeks to capture delayed therapy response (132). Immune-
related adverse events commonly observed after immunother-
apy often resemble and must be distinguished from tumor pro-
gression at imaging. Indeed, the term pseudoprogression refers 
to when a tumor in a patient treated with immunotherapy ini-
tially increases in size, but then later decreases (131). However, 
none of the response criteria described above have been vali-
dated with intratumoral delivery methods or approaches com-
bining loco-regional therapy (percutaneous and transarterial) 
with systemically delivered immune-reactive agents, which will 
be essential before they are widely implemented to successfully 
evaluate treatment response.

Future Directions and Recommendations
The role of immunotherapy in cancer care is rapidly develop-
ing, and immunotherapy will continue to be a key player in 
improving cancer care. As our role as interventional oncologists 
in relation to immunomodulation continues to take shape, 
multiple questions and challenges exist for determining some 
of the optimal approaches and implementing immunotherapy 
into practice, and these are outlined in the Table. Some of these 
challenges include the cost of preclinical basic science studies, 
correlating serum and tumor markers to outcomes, incorporat-
ing more extensive proteomic and genomic sampling and test-
ing, and achieving appropriate patient and tumor selection to 
account for biologic variability. In experimental studies, there 
are challenges in the selection of representative animal models 

inhibitor approved for HCC (116). A multicenter phase I pilot 
study is currently underway to evaluate the use of drug-eluting 
bead TACE with nivolumab and the study is scheduled to be 
completed in April 2019 (NCT03143270). Well-designed 
phase II and III trials that examine a combination approach of 
embolization and checkpoint inhibition will be necessary.

Some cancers such as HCC are suitable for TARE but not all 
cancer types are radiosensitive. Ionizing radiation has demon-
strated the ability to effectively recruit effector T cells, converting 
poorly inflamed tumors (so-called immune deserts or nonimmu-
noresponsive tumors) into immunogenic tumors (117). Admin-
istered doses are a major determinant of treatment efficacy and 
the potential immunomodulatory activities of TARE are likely 
to be dose-dependent (118). 90Y has a short half-life (2.67 days) 
and a majority (.95%) of radiation is delivered into the targeted 
area within 2 weeks after administration (119). Thus, both the 
dose and timing of evaluation are fundamental to understand-
ing the immunologic events after TARE. Although TARE has 
immunogenic potential and cases of abscopal effect have been 
reported (8), a procedure-induced immune response is unlikely 
to be of sufficient magnitude to cause sustained regression of 
distant metastases. Future studies are needed to determine the 
optimal administered radiation dose eliciting an adequate im-
mune response and to define the ideal immunomodulatory 
agent, schedule, and route of delivery. Dual-checkpoint block-
ade such as anticytotoxic T-lymphocyte-associated protein 4 and 
programmed cell death protein ligand 1 antibodies combined 
with radiation have demonstrated a 60% survival rate versus 
25% for immunotherapy alone in a preclinical model (48).

To maximize the potential additive or synergistic benefits 
of combining local-regional therapies with immunomodu-
lation, optimal treatment sequencing and timing will also 
be essential (120,121). In addition to exploiting treatment-
triggered immunomodulation after local-regional therapies 
(75,81,82), manipulations such as priming (122) or poten-
tiation (74,123–130) have been attempted. Much of the pub-
lished data are preclinical (74,81,82,122–125,127,128,130), 
but human data (75,129) and even pilot trial results 
(124,126) have begun to emerge. Approximately 50 combi-
nation immunotherapy and local-regional therapy trials are 
listed as active in ClinicalTrials.gov and combine ablation or 
embolic therapy with cellular or pharmacological immuno-
therapy, but only a handful have incorporated the timing 
or sequencing of therapies as a systematic test variable. One 
report specifically found a clear advantage of priming with 
immunotherapy before ablation compared with concurrent 
or delayed immunotherapy in a murine breast cancer model 
(122). Priming was associated with enhanced suppression of 
tumor macrophages and expansion of CD8 T cells. It was 
postulated that thermal ablation exerted such a drastic me-
chanical destruction of the tumor microenvironment and al-
teration in immune phenotype due to inflammation that it 
rendered concurrent or delayed immunotherapy less effective. 
With further investigation and mechanistic understanding, it 
is clear that the sequence and timing of combined immuno-
therapies with interventions will have an important role in 
optimized treatments.
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likely also have a role in transarterial embolizations, necessi-
tating specific terminology. Standardized reports will have an 
important role in this endeavor.

Personalized IO
Future research will need to identify whether observed immune 
system effects vary on the basis of organ system, tumor type, 
IO therapy and administration, and timing of secondary ef-
fects after treatment. We will need better insights into how best 
to recognize patients and tumors that may benefit from partic-
ular interventions or combination therapies, optimal timing of 
therapies, and patients who are at risk for tumorigenic effects. 
The range of immunomodulatory effects (both cellular and hu-
moral) will further need to be identified and characterized for 
each treatment modality. Further investigations to determine 
how best to control the immune response as it relates to the 
individual, combination therapies, and sequencing of therapies 
will be crucial if IO therapies are to be optimized for strong 
immune effects. Identification of whether immunotherapies 
should be sequenced before (ie, priming), concurrently, or after 
(ie, potentiating) interventions will be essential and the precise 
sequences may vary according to tumor type, immune status, 
and treatment modality. Large multi-institution trials and reg-
istries will be helpful in elucidating the optimal strategies.

Tumor Stimulating Effects of IO Procedures
Significant issues regarding the tumor stimulating effects of lo-
cal therapies remain, and they include the following: (a) when 
these effects occur on the basis of organ, tumor type, specif-
ics of IO therapy and administration, and timing of second-
ary effects after treatment; (b) how best to recognize patients 
and tumors that are at risk for such effects; and (c) when, how, 
and in whom additional measures should be taken to reduce 
potential unintended tumor stimulation. Understanding these 
effects can be challenging because many current studies are 
focused on local treatment efficacy, and therefore patients are 
not tracked and/or data are not collected that would account 
for the manifestation of some of these effects. Additionally, in 
many patients, markers of effects may be biochemical in the lo-
cal treated tissues and/or systemic circulation, and are therefore 
never sampled. Prospective large comparative studies, in par-
ticular those that assess outcomes, will ultimately be required 
where variability in patient and tumor biology is accounted for 
to determine ideal treatment regimens.

Imaging Biomarkers of IO Procedures
Imaging of relevant elements of the immune system will also 
be essential as the evaluation of tumor response to immuno-
therapies begins to play a regular role in clinical care for can-
cer patients. Several imaging methods are currently being de-
veloped to capture clinically relevant elements of the tumor 
microenvironment including the immune system such as bio-
sensor imaging of redundant deviation in shifts and phospho-
rous 31 MR spectroscopy (133). Techniques that use chemical 
exchange saturation transfer for imaging various compounds 
(eg, lactate), that are indirectly viewed through water signal by 
circumventing labeling or radioactive isotopes (134) are also 

in which the underlying organ physiology matches the human 
condition and the selection of models in which the IO therapy 
can be scaled down in size but is still representative of the hu-
man condition.

IO Lexicon
As additional research in immuno-oncology is conducted in 
relation to IO, development of a standard lexicon will become 
necessary. Various terms have been used to describe the im-
mune response, such as immunogenic, abscopal, and anti-tumor 
immunity, with multiple descriptors considered to be equiva-
lent. The term off-target effect has also been used and refers to 
situations in which the end site of action or stimulation is in 
tumor, tissues, or organs that are physically separate from the 
treatment zone. In the future, key distinctions will likely be 
required between off-target effects, which denote effects occur-
ring at the treatment site, effects that influence tumor biology 
at a separate site, and those that occur within a partially treated 
tumor (either from partial embolization or partial ablation). 
Technique and procedure-related differences for ablative thera-
pies have shown variable pro-oncogenic effects on the basis of 
the method of ablation, method of tissue injury, extent of abla-
tive margin, and differences in thermal heating pattern, which 

Future Directions and Recommendations for Immuno-
therapy and Interventional Oncology

1. Interventional oncology lexicon
 Define commonly used immunobiology terms as they pertain  
  to IO procedures and follow-up.
 Establish criteria for identification of antitumor immunity,  
  pro-oncogenic effects, and abscopal effects.
 Harmonize the description of technique and procedural  
   details (method of tissue injury, margins, particles, etc)  

through standardized reporting.
2. Personalized interventional oncology
 Determine the effect of organ, tumor type, and IO  
   procedure on immune system effects through preclinical,  

translational, and clinical studies.
 Investigate the timing of administration of immunotherapy  
  in combination with IO therapies through clinical trials.
 Create multi-institution registries to allow for large-scale  
  data mining and determination of correlations.
3. Tumor-stimulating effects of interventional oncology proce-
dures
 Recognize patient/tumor characteristics and procedural  
  factors that predict pro-oncogenic effects.
 Identify optimal methods for eliminating unwanted  
  protumorigenic effects.
4. Imaging biomarkers of IO procedures
 Require use of immune response criteria in addition  
   to conventional imaging criteria in reporting response to  

IO treatments.
 Validate new early imaging markers of therapeutic efficacy  
  and response.
 Design imaging studies that can assess the tumor  
  microenvironment.

Note.—IO = interventional oncology.
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in development. The application of new and reliable imaging 
techniques in diagnostic and follow-up imaging will be critical 
for identifying therapeutic efficacy and nonresponders early in 
the course of treatment. First, one or a combination of several 
elements of the immune system must be identified as image-
able biomarkers for determining susceptibility to treatment, 
and for assessing therapy success and response. These might 
include target molecules (eg, programmed cell death protein 1 
receptor status and c-Met status), cell secretions such as gran-
zyme B (13), immune cell populations (ie, dendritic cells, M1 
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and tracers) must be developed for use in MRI or PET systems 
to image relevant factors that measure immune system activity. 
Third, prospective clinical trials including longitudinal imag-
ing must be conducted to systematically apply and evaluate 
the clinical value of the developed methods with the ultimate 
goal of developing novel and objective tumor response criteria.

Conclusion
Regardless of the challenges we face in investigating and incor-
porating immuno-oncology into an interventional oncology (IO) 
practice, immunotherapy is destined to become an integral part 
of IO care and the integration is therefore essential for the future 
of IO. Logical steps will be necessary to progressively implement 
and assimilate this evolving field into our practices. Both preclini-
cal and clinical studies are already underway for evaluating the 
role of IO in the field of immuno-oncology. Further clinical tri-
als involving local-regional therapy in combination with systemic 
immunotherapies (T cell and checkpoint) will be critical to opti-
mize treatment regimens, beginning with phase I pilot studies that 
evaluate safety end points and comprehensive immune profiling 
(both genetic and pathologic). Ultimately, phase II and III studies 
with efficacy end points and tailored immune profiling will be re-
quired. We are at the beginning of an exciting revolution in cancer 
care with the advent of immunotherapy. The role that IO will play 
in immunotherapy will depend on our collective efforts to address 
rational questions regarding the fundamental immune effects of 
local and regional image-guided interventions.
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